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& simple cconcise formulaticn of the michlenm of propagation
in mulicomponent plasmas with static magnetic fields is qgiluen,
Zpplication to plasmas,. such 2z the icussphere, containing
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Examination of the very-low-frequency (VIF) recorxdings
of the Alouette I satellite showed the existence of emissions
at fregqguencies of a few kilccycles which were apparently generated
in the immediate vicinity of the satellite. [Brice, at al, 1964;
Brice znd Smith, 196#]. It was suggested by Brice and Smith
[1964] that the lower frecuency cutoff of these emissions was the
lower hybrid resonance freguency, fr’ for the plasma surrcund-
ing the satellite. For & moderately dense plasma containin
electrons and & single ionic sczecies, this rescnance frequency

Ky

is given by

1 d 1 ,
2 = 2t .2 (1)
x e B

where fo is the electron plasma frequency. fH the electron
gyrofrequency, and M the mass~to-charge ratic of the ions

Jative to that of the 2lectrens, In the ionosphere we exgpect

gy

ig of interest to detexzine

[N
or

more than cone ionic species, so that
the lower hybrid rescnance freguency for a plasm= containinc
multiple ion species. This interest has led to examination of
the problem of propagation in any multicomponent plasma, Semef
concideration of this problem has been given by Hines [1957],

Yakimenke [1562] .
Buchsbaum [16601/and Gintsburg [1963]. Hines [1057] gave the

refractive index for many icns. In addition he showed that for
very low frequencies in the ionosghere,the upper frequency

cutoff for propagation transverse to the static magnetic field
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was at a freguency welil zbove the ion gyrofrequency. This cutoff
frequency is referred to as the lower hybrid resonance [Stix,
1962). ©Buchsbaum [1960] showed that in the presence of twe
ionic species an additional rescnance wag found for propagaticn
transverse to the static magnetic field at a frequency betwesn
Yakimernko [ 1962] and
the two ionic gyrofregquencies./ Gintsburg [1663], considering
propagaticn of Alfven waves in the presence of multiplie ions,
shrowed that a resonance existed at sach ion gyrofrequency with
a cutocff at intermediate freguencies, The derivation bhelow
proceeds in asiraightforward manner to yield relatively simple
formulae describing propagation characterxristics in a muliiple
component plasma, We deduce that the addition of each ionic
species beyond the first introduces two additional resonances,
a cutoff, and a crossover frequency. The crossover frequency,
initially named for a freguency at which three limiting modes
have the same phase velocity, is shown a2lso to result in a
change of modes for waves propagating in a slowly varying medium,
Interesting features of propagaticn arising from the presence

of multiple ion species are illustrated graphically.

REFRACTIVE JINDICES FOR THE PRINCIPAL MODES

In the derivaticn below, we comsider small signal sinu-
soidal plane waves in a uniform cold plasme containing a static
magnetic field,., For completeness, the derxivation is staxted
from Mexwell's eguations and the ILorentz force law, From

Maxwell’s eguations
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where ¢ is the refractive index and UE the effective relative

dielectric constant for the medium, Thus u2 may be simply

related to the current J Dby

>}

itﬂeOE {5}

If the plasme contains many different species of charged
particles, the total current is, of course, the sum of the
currents arising from each of the species. In a rectangulazr
coordinate system with a static magnetic field B in the z
directicn the velocities for a given perticle species with

charge 4, and mass m _  ave found from the Lorentz force law

5

iom v, =gq (B, + vy B) (6)
iwnn, vy =9 (Ey - v, B) (7)
. N ¢

iom v, =q E {8)

above eguations if we assume a collisional demping term
proportional to velocity, Then the left hand side of

equation (6} becomes

...3.=




: s s = 2 Y /
m (i wv, + Ve Vel =iw r.ov, (1 -1 v /) {9)
=iwm v, (1-1i32.) (10}
- r Tx VT ! WL

and similarly for the other two eguations, Thus the effect of
collisions may be included by replacing the mass of the particle

. by m_ (1 - % Zr'.

The equaticns are further simplified by the introduction
of polarized ccordinates (x + i y)A/2, (x - i v)/'P, =z, and
by using the convenient subscript notation of Buneman [19611.

so that, for example,

vV, = /§—

—
Lant
foud

L

vV - i vy .
Vi = 75 (12
Vo = v, {13}
From equatioms (6), (7}, and (8}, we cbtain
iem v =q (B, - 1iwv; B) (14)
iwm v, q. (E, # i v B) (15)
iwm vo = g_ E, (16}

These equations may be collectively written as

: pa B 9 .
eV, (1 + m, Y= = By (

!.,,s
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where p = (-1, 0, +1). The curzent J due tc the rEE

pr
species with number density N is
2
N_ g B
g = —E-E_-F (18)
pr iwm(l+paq B) :
m_ oW
r
Xv
:.--130(!1 R Yr Ep (1'9)

where Xr is the ratio of the square of the plasma Irequency
of the kb species tc the square of wave freguency, anrd Yr is
the ratic of the gyrofraequency of particles of the rth species
to the wave frequency, with the sign of Y& being the same as
the sign of the charge of the rEE species. The total current

is then the sum of the curxents due to each species, so that

we obtain using equation (5),

X
2 r
S1-) 20}
Yp f pyY +1 (20}

Equation (20) gives the refractive indices for the three
“principal” modes of propagatiocn in the plasma, the right (+1)
ah&'the left (—1) circularly polarized longitudinal modes and
the transverse plasma mode {0). The terms longitudinal and
transverse refer here to the direction of propagation with

respect to the static magnetic field,

REFRACTIVE INDICES FOR ARBITRARY DIRECT

The derivation below follows class notes prepared by

Buneman [private coammunication],

B



Jithout loss of gemerality, we may assume that the

ropagation vector k 1lies in the - z plane, making an

}“-J

angle g with the z-axis, The wave eguation may be written

- . 2 =
2T XU XE = lT) mmégug_ (213
9t
so that
s _ ¢ . Y 5o
P2 E - Rk - B)] = (T w2 & (22)

The relative dielectric constant, e(r), in these equaticns
must be interpreted as =2 tensor., This complicaticn is cbviated
by the use of polarized cocrdinates. The polarized components

of equation (22) are given by

2.2, 2 = = 2 2
X - - E = { 4 B 2
¢k o ckp(k ) w p.p o (23}
(p = -1, O, +1)
From this zquation we obtain
2 k - E
E_=c v k (24)
P C2k2 - meu G P

P
A
Letting k = k/lk| and W (the phase velocity) = w/|k|,

equation (24) becomes

A

__K.E_
p 1-w2/wp‘£ 1

w>
o

5)

It is seen that when the divergence of E is zero (E e E = 0},
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non-zero values of electric field may be obtained only for the
three principal modes (W = W?). For this reason these modes
may alSO be referred to as the "charge-free" modes,

Let us now consider the summzation

Z A A A Fal
k E = k—l E1 -+ k1 E-—l +k° EO (26}
P “P P
N A ./\ - > «
=.x1‘3x+ky +kz E, (27
&~ -
=k « E (283
A
Multiplying both sides of equation {25) by k__ =and summing
over p, we f£ind
k_k
A Fa — - o _
anm=§koa)z -pP2=k-E (29)
p PP P o1~ w/w
Assuming that %X - E is non-zero, we obtain
x %
‘P .“D . 1
Z 5 5 = 1 (30)
P 1 -W/W
P
For the orientation of the axes chosen,
A . A A -
k., = sin g; ky = 0; k, = cos g (31)
so0 that
21 = Q_i = sin §//2; Q@ = cos g {32)

Equation {30) then becomes




1 qinza l s 1 1 ’ Cosaw B -
REREAM L - wMT T T -w/Ma T L - W T
: : (333
which may be rewritten as
W, ® W_,° . W2
1 aips - e o o e - =
T Sin'e |G R T oW T 2 Y eosTe T : ©
os (3%)
. w oW o+ W w,? - owt R ( P ]
2 sin®g ~ - + cos® g =0
(W, ? - W (W, -~ W) W2 - W
. —-d . .
(35:
Introducing the quantity
W2 = (W7 4 WL®) (36)

@

we obtain

(v - Wés)(wg - W?) sin®g + (W - W2 ) (W - W-1®) cos®g = 0O
(37)

It is seen that for zero angle of propagation, the two
modes are the +1 and -1 principal modes, For ninety dagrees,
we obtain the (O principal mode and the transverse extraordinary
(e) mode. For the e-mode, the sqguare of the phase velocity
is the average of the saquares of the phase velocities of the
two longitudinal (+1 and ~1) modes, These four modes obtained
for the limiting angles of 0% and 900 will be referred to as
the limiting modes.

For any arbitrary divection of propagation the phase
velocities and hence refractive indices of the two characteristic

-8-

.




modes may be otained from equation (37) in terms of the phase

velocities of the four limiting modes,

FOLARIZATION

For the +1 principal mode; the polarization is right
circular; for the -1 mcde, left circular; and for the 0 mode,
linear. Purther, it is seen from equation (25) that for these
principal modes there is no component of electric field in the
wave normal direction, For W’f Wé, the ratios of the »-Z

electric fields are obtained from eguation (25) as

2

W, 2 W_, ‘}
E: 1E: E_=sin g + (38}
x y = 2 W2 - W Wey? - WBJ
W, 3 W, ]
: Sin g m— s ——
2 We o-w W_,2 —wej

Wo?
cos g

We - w

The four values of interest are the components Ez and Ey
together with En’ the component in the wave normal direction,
and E,» the component in the wave front and the x-z plane,
where

E, =E, cos g + E_sin ¢ (39)

n Z

E, = E, cos g - E, sin g {40)




In discussing the magnitudes of the field components of
the wave, it is convenient to use as a standard the fields
obtained with the same Eoynting flux for propagztion in free
space, For linear or circular pclarization, the ratio of wave
electric field in the wave front, E,» to the equivalen£ free

space value, Efs’ is given by

E

E. °~— ¥
Is

£

-3 (41)

while for the magnetic field of the wave,

B 1
A
Bf = 515 (42)
s

GROUP REFRACTIVE INDICES

In order to obtain the group refractive indices, we
examine initially the principal modes, then the transverse
extraordinary mode,and finally the modes for arbitrary angles,

The group refractive index Mg may be cbtained from

(43)

T

1=
1+

1}

™

[ V]

+
rojs
EI&)

XI.'
z (1)

S . V2
ks K_p.hr-r}.]

)
7
I
H
]
o
~1
o]
”

FPor the transverse extraordinary mcde, we obtain from equation (35)
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Etde = i1 +  d_z (45}

Differentiating equation (45) with respect to w and

multipiying by ®/2, we cbtain

: 2 2
2 W a'l‘e R o Sty L =t ® Oh—y
4 2 ow & 2 ow s 2 ow
Mo Ha Mz

(46)

Adding the left and right hand sides of equations (45) and (46),

and using equation (36},

u:‘“ (ug Hge) = uj“ (ks gy ) + ui“‘ (12 wg- ) (47

Examination of equaticns (44) and (47) shows that the
product of the refractive index and group refractive index is
very simply computed for the limiting modes., Since eguatien
(20) gives the value of ® xrather than u, factors of g
in equation {47) have deliberately not bzen cancelled.

The formula for calculating the group refractive index
for arbitrary directions of propagation is obtained by diffexr-
entiating equation (37) with respect to w® and multiplying
by w/2, as before, and then adding twice the left and right
hand sides of eguation (37). This process yields the somewhat

lengthy but reasonably symmetrical form

-11-




{;; o g W / /u i ST )
sir® g 4 - R I T +k_g_ —e _ge \(,=s _ -2
] 4 4 & /
U Vg U Mg
Lo
\/ \
) TRy My Mg . - (uu Hop 4 g /_ﬁ
+ ¢cos” g 9 -— éﬂ U"' - U_a 2 + ég - f \“ 2 Uy
M 51 \ H Hey
=0 (48)

RESONANRCES AMD CUTOFEF FREQUEHCIES

In what follows, thes term "resonance® will be used to des-
cribe frequencies at which the refractive index is infinite (zero
phase velocity) and the term “cutoff® for frequencies at which
the refractive index is zero (infinite phase velocity). From
equation (20) it is apparent that for the principal modes the

resonance frequencies are those for which

PY. +1=0 (49)

remembering that Y. is pesitive for positively charged species
and negative for negatively charged species, Thus for left (-1)
circularly polarized waves, a resonance is found at the gyro-
frequency of each of the positively charged constituents; for
right (+1) circularly polarized waves the resconances occur at
the gyrofrequencies of the negatively charged constituents. It

is readily apparent that for the plasma mode (p = 0) there are

no resonances,

L‘\___./ls\



From equation (36),it is seen that rescnances occur for
the transverse extracrdinary modes (e) when the squares of the
refractive indices of the +1 and -1 longitudinal modes arec egqual
in magnitude and opposite in sign, Using equatiorn (20), this

resonance is obtained from

y % v _%
1 -4 = + 1~ - =0 {50)
r 1+ Yr r 1 - Yr
Z X_ X )
—— - = 2 (51)
r \1l+v¥, 1-v,

(52)

n N
o

i

[

For arbitrary angles we note that equation {37) is of the form

Sawrrt

ay W + 0 W + a0 =0 (33

For a resonance, we require ag = O. This condition is readilv
] 1 (o} }

found to be

et

X
1 -2 E sin® ¢ + 1 -% X cos® g = O (54
r 1 - Y&z r

provided I A& is not equal to 1.
xr
For cutoff frequencies we require zero refractive index,

so that for the principal modes
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O S (55)

From eguation (30), it is apparent that a cutoff frequency
(infinite phase velocity} for either the +1 or -1 modes is also
a cutoff for the transverse extraocrdinary mode, Further, from
consideration of equation (37), it may be seen that a cutoff
frequency for any of the limiting modes will also be a cutoff
for one of the characteristic modes for all angles,

It is of interest to ccnsider the polarization of waves

P
<=

at frequencies near cutoff and resonance frequencies, It is

se2en from equations (41) and (U42) that cutoffs are characterized
by large electric fields in the wavefront, Fuzther,>of the four
limiting modes,'only the transverse extraordinary modes may have

- a component of wave electric field in the direction of propagation.

For this mode it may be shown from equations (38) and (39) that

E, = 0 (56)
a <
* EY o EY Ww° o+ W,

At a cutoff for the transverse extracrdinary mcde, eitherx
W,> or W_,? tends toward infinity so that the magnitudes of
Ex and Ey become equal, Thus the electric field of the wave
s

. . . .
circularly pelarized and consists of one component in the

Jote

wave normal direction, while the other lies in the wavefront and

is perpendicular tc the static magnetic field, The magnetic field

“3he




of the wave is parallel to the static magnetic field,

For resconance frequencies, the component of electric field
in the wavefront becomes small, so that the principal modes are
dominated by large magnetic fields of the wave., 1In these cases,
the resonances are termed "electromagnetic,” However, for the

transverse extracrdinary mode near a resconance frequency,

W, ® 1° (58)

s
)
&.‘

b

w? = 0 (59)

and using eguations (36) and (57}, it is seen that

2 38
Y LA 1

v

Thus for the e~mode the dominant wave field near resoOnance is

the large electric field component in the direction of propagation,

Rescnances for this case are termed Yelectrostatic.®

PROPAGATION WITH MULTIPLE ICON SPECIES

As an illustration of the formulae derived above, their
application to a plasma containing electrons and multiple
positive ionic species is considered, For frequencies of the
order of or greater than the electron gyrofreqguency, ion effects
on propagation are extremely small, We will therefore conceantrate

our attention on fregquencies which are considerably less than

~i5-




the electron gyrofrequency, For these frequencies therz are no

resonancss or cuteffs for the right circularly polarized (+1

St

mode if we exclude negative ions from consideration, Furthermore,
unless the electron plasma frequency is much less than the
electron gyrofrequency, the plasma (0} mode will be a non-
propagating mode for the frequencies of interest, It is shown
below that for medium and high density placmas most of the
frequencies of intexest are independent pf the electron plasma
frequency, so that in Figuresl throuch 4, the frequency has

been nermalized to the electron gyrofrequency, the ratio being

denoted by A so that

To illustrate propagation characteristics, the refractive
index or phase velocity, or the sgquares of these quantities,
may be used, Because of the relationship given by equation
(36), we have chosen,for the most part, to plot phase velocity
squared as a function of 1A, for the +1 or right circulaxly
polarized wave (R}, for the -1 or left circularly polarized
wave (L), and for the transverse extraordinary mode (e), For
all of these figures a2 ratio of electron gyrofrequency to elec-
tron plasma fregquency of 0.4 was used, BAll ions were assumlad
singly charged,

Figures la, 1b, and lc show the phase velocity sdquared
as a function of ) for plasmas containing only one ion

~16-




s
~he
H

(hydrogen), two ions (75% H', 25% He'), and three ions (75% 55,

— + 4
20% HeT, 5% 07), respectivel

o

©

For one ion (Pigure la), the two freguencies of interest
are the well-known ion gyrofrequency resonance for the L-mode
and the lower hybrid resonance for the e-mode, the former
resonance being slectromagnetic and the lattex electrostatic,
The two-~ion case shows many new features, a cutoff for the e

and I, modes and an additional resonance for the e mode and

ore for the L-mode, and a fraguency gt which the phase velccities

for the R, L, and e modes are all sgual, The additional resonance

frequency for the L~mode is, of course, the gyrocirequency of the

second ion, For reasons that will become apparent later, ths

term "lower hybrid resonance® will be used for the "e" mode

resonance freguency which is abocve the highest ion gyrofrequency

and below the electron gyrofrequency, i.e., the highest e-mode
resonance shown in Figures la through lc, The existence of
an additional resonance for the e-mode, as seen in Figure ib,
was noted by Buchsbaum {19607, This lower frequency e-mode
resonance will be referred tc as the "two-ion resonance,®
Similarly, the cutoff shown in Figure 1b will be called
the “two-ion cutoff." The fregquency at which the R, L, and
e-modes have the same phase velocity will be called the
“crossover frequency.®
The new features found when a sescond ion is added are
repeated with the addition of a third ion (Pigure lc) and from

FPigures la through 1ic, the generzl pattern obtained for four or
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more ions is readily apparent. For wmore than two ions, the
additional e~mode rescnances may be referred to 35 "multiple-
ion resonances®, and the cutoffs as "multiple-ion cutoffs.”

/Por the R-mode .
It is apparent that the intrcduction of negative ions

will introduce features similaxr to those shown

for the L-mode in PFigures lb and lic.

PEASE VEIQOCITY SURFACES

Por consideration of propagation at arbitrary wave nczm;l
angles, it is convenient to use phase velocity surfaces, i.e,,
polar plots of the phase velocity as a function of the angle
from the static magnetic field to the wave normal direction,
The phase velocity may be cbtained from equation (37), which

may also be written in the form

oW = W® sin® ¢ + W (1 + cos® o)

,-w\
N
4]

j;}(Woa -WE) sin®* 9 4 (W,2 - w_,2)® cos® ¢

The term contained within the radical sign of eguation
(62) is positive definite,end is zero between 0° and 90° only
if all four limiting modes have the same phase velocity,
Neglecting this circumstance, the radical is zero only for
6 = 0° and Wy =W,, or g = 90o and W = W,. For any angle
other than possibly 0° or 900, one mode always has greater

phase velocity than the other, the former being called the

fast mode and the latter the slow mode, It is apparent then
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0

that as the direction of propagation is varied, the fast mode
for longitudinal propagation is always transformed to the fast
mode for transverse propagation, and similarly for the siow
modz, From tha zbove discussicn, the general nature of the
phase velccity sucfaces may be deduced from the phase velocities
of the four limiting modes,

In Pigures la through lc the square of the velocity of

the O-mocde is not shown, but it is small and negative, Thus

]

=

for the Ireguencies and parametezs choszn a maximum nurnber ¢

three of ©

{

he limiting modes may rropagate, Fro:

{=
ot
I
n

Pigure 1,
seen that when multiple ions are introduced, the fast mode in
the longitudinal directicn may be either the right or left
circulariy polarized modes,

Pigures 2a and Z2b show phase velocity surfaces for
frequencies slightly below and slightly above a crossover
frequency where three of the limiting modes propagate, The
fast mode for longitudinal propagation is left circularly
peolarized in Pigure 2a and right circuiarly polarized in
Figure 2b, Figures 2¢ and 2¢ show phase velocity surfaces for
frequencies at which twoe and one limiting modes, respectively,

may propagate,

THE CROSSOVER FREQUENCY

Prom examination of Figures Za and Zb, it is apparent that
at the crossover frequency, prepagation is isotropic for the
fast mode and the phase velocity follows appreoximately a cosine
law for the slcw mode., These two features are found for AlLfven

-19-




propagation when the frequency tends toward zero, Experiments
on Alfven propagation are usually difficult to perform, since
collisions must be exceedingly infrequent, However, this
difficulty may be overcome by using plasmas containing two
or more ion species and propagating at & crossover frequency,
Also, from Figures 2a and 2b we may anticipate that if
the crossover frequency moves through the wave frequency, the
wave polarization will change from predominately right circular
to predominately left circular., This peint is alsc illustrated
in Figure 3, where the phase velocity squared is plotted as a
function of i(= f/fH) for several wave normal angles for a
plasma containing 80% hydrogen ions and 20% oxvgen ions. It
is seen that for all angles the fast mode passes through the
cross-over point and that the slore of these curves is tas came
for all angles other than zero. We may deducz that the grcup
velocity for the fast meode for non-zero angle will be indegpendent
of angle. From the formulation of polarization given akove
it may be deduced that both the fast and slow waves are lireariy
polarized at the crossover frequency for all wave normal angles

other than zero,

USEFUL APPROXIMATICNS FOR IONOSPHERZIC APPLICATIONS

In general we may assume that the ionic mass is much greater
than the electron mass (M >> 1), Then if we define dense plasmas

as those for which £,° >> fE?, and moderately dense plasmas

for which M £, >> fﬁfg we may say that the ionosphere is at

least moderately dense at all heights above about 8C km.
w20~



Frequencies of interest here are always less than the geometric

N . . . . 2
mean of electron and ion gyrofreguencies, so that qu >> £

and £,% >> £ £ The usefulness of these approuimations will

£
be seen in the next section,

PROPAGATION WITH TWO-ION SPECIES

As was discussed above, no essentially new features are
added when a third ion species is introduced, ss that it is
instructive to derive wmore specific formulae for the fredguenciss
of interest for a moderately dense plasma containing electrons
(e} and two ion species (il and i2), For this case, the lower

hybrid resonance frequency is found from equation (52),

X X. X,
1+ ——=—  + l: + 12 =0 (63)
Yo -1 ¥jp -1 Yiow -1

Since the lower hybrid resonance (for one ion species)
is of the order of the ion plasma frequency or the geometric
mean gyrofreguency, whichever is the less, we may assume for

a plasma at least moderately dense that
2 . 3 -
Y > 1; y®<<1 (64)
and equation (63) becomes

8 ——
¥ + X, = (x,

m
e
boe
n

If we define Aj as the fraction of the positive ion charge
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h

density occupied by the jt‘ ion species and M, as the
mass to charge ratio cf the jtn ion species relztive to that
of the electron, then
A,
T ¢
X4 = X H, (65)
J
Equation (65) may then bes written
A,
1 Z: i . 2 + L (671
f = . 31. e 2 f 2

where fr is the lowexr hybrid resonance freqguency. While
equation (67) was derived for two ions, it is equally valid
for any number of ionic species,

The two-ion resonance frequency is always intermediate
between the two ionic gyrofrecuencies, as is the two-ion
cutoff frequency and the crossover freguency, To determine

the two-ion resonance frequency, equation {63} is written

Xe A, M, Xe A, My Xe \

3 3 1 — 6 :

1+ v s _ 1 r -2 _ " 2 T -2 . 3 O ( 8
e “e 1 Te M

for frequencies of the order of the ion gyrofregquencies

Y® ~ 0 (69}

e

so that the last two terms of equation (68} sre of the oxder

L
S
()

1

of M x§f323; which is much greater than Xé/?eg and for

dense or moderately dense plasma is much greater than unity.

DD




Using these approximations, equatica (58} becomes

A, oM A, M,
v 3 _ 2 * 3 2 =0 (70)
v2 - M Y2 - M

£ = 71
oTr o, M, \ e M, A Mg (73]
The two-ion cutcff freguency lec is cktained from

equation (55), putting “"p* equal to ~l. We then obtain for

two ion species

X, ) 2, X, i} B; X, . (72)
o — - = { =
Y, + 1 Y, - Y, - %

3 o > (73)
—_ = — b g—— 13}

¥, Y, - M Y, - ¥
Noting that § Aj = 1, (T4}

.
=3
n

(,Al Ag \\
fo1e = £y T ™
\

M. /
The crosgover fregquency fcr is obtained from
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Y:—el ) yls-»l 2:»::21 =0 (76
e ik i2
from which we £ind (for Ye2 >> 1}
. . 77
Yea Yea - M2 Yez - M,°
so that

Bg A\

2 / y
cr fy &Mza + 2 ) (78

It should ke noted that the lower hybrid resonance

h
w
i

frequency is independent of electron density only for dense
plasmas, The multiple-ion cutoff and resonance Efrequencies

are independent of density for plasmas which are at least
moderately dense, while the crossover fregquencies are completely
independent of density,

As an example of the application of the formulae derived
above for the two~ion rescnance, cutoff and crossover frequencies,
consider a plasma with twenty percent oxygen atoms and eighty
rercent protons, with an electron plasma frequency of»400 kiio—
cycles and an electren gyrofrequency of one megacycle.

Then the lower hybrid resonance frequency obtained from
equation (67) is 7.83 kilocycles, and the two-ion resonance
frequency is found from egquation (71} to be 75.8 cycles. The
two-icn cutoff frequency of 136,5 cycles is cobtained from
equation (75} and the crossover frequency of 246 cycles from

equaticn (78). -l



A number of the features of propagation in a multicomponent
plasma are summarized in FPigure 4, Figurez 4a and 4 show the
group velocity and phase velocity as a function of normalized
frequency. In Figure 4c are sketched phase velocity surfaces
{not to scale) for freguencies indicated, There are a sufficient
number of surfaces shown to indicate the general nature of propa-
gation in the frequency range where icns are important, The
ion constituents are assumed to be 80% hydrogen znd 2 o en,

72 Iy 3 Xxyg
The ion gyrofrequencies are at a normalized frequency of akout
"5 - 1 "'l" . .
.41 % 10 and 5,46 x 10 ', The two-ion resonance occurs =t
-3 : - i s o ~4
7.83 x 10 °, The two-ion cutoff occurs at 1.38 x 10 and
-4 . . . .
crossover at 2,46 x 10 '. The figure also illustrates the weil

known fact that the group velocity is zero whenever the vhase

velocity is either zero or infinite,

DETERMINATION OF CONSTITUENTS

It has heen shown above that the number of multiple-ion
resonance frequencies, the number of multiple-~ion cutoff
frequencies, and the number of crossover freguencies are each
one less than the number of ionic species, Also, for plasmas
at least moderately dense, all of these frequencies are inde-
pendent of density and are functions only of the electron gyro-
frequency and the masses and relative densities of the ionic
constituents,

Thus, given the ion wasses‘(or, more accurately, mess-
to-charge ratios) the relative densities (A_} of each of the
ionic constituents of a moderately dense multiple-ion plasma
may be determined from a knowledge of either all the multiple-icn
resonance frequencies or all the multiple-ion cutoff frequencies,

25—
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-or all the crosscver frequencies (remembering that I Aj = 1}.
if mass-to-charge ratios of the ions are not known, they mav be
found freom a knowledge of the ion gyrofrequency rcesonances,

It i. epparent that measurement of multiple-ion resonance
and cutoff frequencies may provide a useful diagnostic tool for
plasmas containing multiple ion species, such as the earth's

ionosphere,

REIATED EXPERIMENTAL DATA

As was noted above, VLF emissions which are believed to
arise from the lower hybrid resonance have been observed in
satellites [Brice and Smith, 1964}. Very strong signals,
apparently associated with the proton gyrofrequency, have zlso
been observed [Smith, et al, 1964}, In addition, propagation
phenomena believed to arise from the lower hybrid resonance,

a multiple ion cutoff, and a crcssover frequency have been

found, These will be discussed in detail at a later date.

DISCUSSION

The results derived above have already been found to e
extremely useful in the interpretaticn of rocket and satellite
VLF recordings, They also have obvious potential application
to the problem of determining the ionic constituents of the
ionosphere by, for examprle, measuring the impedénce of an
antenna in the icnosphere as a function of frequency. Considex~-
ation of ionospheric parameters indicaéeé a desirable frequency
fange for sgéh an instrument of 10 cycles to 30 kc, ‘With this

extended low frequency range, the effects associated with the

26w



lower frequency multiple ion cutoffs and resonances may well
be observed, Simultanecus m2asursments of electron plasma and

gyrofrequency would be of interest,
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Figure 1.

Pigure 2.

Pigure 3.

Figure 4,

FIGURE CAPTIONS

~he rquare of phase velocity for three limiting
modes as a function of normalized frequency

A o= f/fH for a plasma consisting of electrons
and {a} hydrogen, (b) 75% hydrogen and 25% helium,
(c) 75% hydrogen, 20% helium, and 5% cxygen.

Phase velocity as a function of wave normal angle
for frequencies {a) slightly below a crossover

(k) slightly above a crossover {(c) at which two
iimiting modes propagate {d} at which one limiting
mode propagates,

The square of phase velocity as a function of
normalized frequency X = f/’fB in the wvicinity

of a crossover for wave normal angles between

0% ara 90°.

(a) Group velocity, {b) phase velocity, and

{c) phase velocity surfaces as a function of

normalized frequency X\ = f/fH.
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